
1

Design and Verification of Byzantine Fault
Tolerant CRDTs

Liangrun Da

School of Computation, Information, and Technology
Technical University of Munich

November 15, 2024

2

Decentralized Collaboration
Wikipedia as an Example

▶ Wikipedia is currently a centralized system and needs funding
to maintain the server.

▶ A decentralized alternative can be run by volunteers without
any central server, hence no funding is needed.

▶ However, decentralized collaboration systems face a major
problem: no consistency guarantee.

3

What are Conflict-free Replicated Data Types?
RGA as an Example

r

p

q

Hllo

Hllo

Hllo

3

What are Conflict-free Replicated Data Types?
RGA as an Example

r

p

q

Hllo

〈Insert “e” after “H” 〉

Hello

〈Insert “!” after “o” 〉

Hllo!

3

What are Conflict-free Replicated Data Types?
RGA as an Example

r

p

q

Hllo
〈Insert “e”

after “H”
〉

Hello

Hello!

3

What are Conflict-free Replicated Data Types?
RGA as an Example

r

p

q

〈Insert “!”
after “o”

〉

Hello!

Hello!

3

What are Conflict-free Replicated Data Types?
RGA as an Example

r

p

q

〈In
ser

t “e”
aft

er
“H

” 〉

〈Insert “!” after “o” 〉

Hello!

Hello!

Hello!

4

Strong Eventual Consistency1

▶ Eventual Delivery: an update delivered at some correct node is
eventually delivered at all correct nodes

▶ Convergence: correct replicas that have delivered the same set
of updates have equivalent state.
▶ Operations are delivered in causal order.
▶ Concurrent operations commute.

▶ Termination: All method executions terminate.
Termination is usually easy to guarantee, so we will focus on the
other two.

1M Shapiro et al. “Conflict-free replicated data types”. In: Stabilization, Safety, and Security of
Distributed Systems: 13th International Symposium, SSS 2011, Grenoble, France, October 10-12, 2011.
Proceedings 13. Springer. 2011, pp. 386–400.

5

Motivation

▶ CRDTs are widely believed to be the solution for replication in
peer-to-peer systems because it doesn’t require a central
server.

▶ Most CRDTs algorithms assume participating peers strictly
follows the protocol, i.e. they are not Byzantine fault tolerant
(BFT).

▶ However, open peer-to-peer systems allow anyone to join or
leave, hence the assumption is not safe.

5

Motivation

▶ CRDTs are widely believed to be the solution for replication in
peer-to-peer systems because it doesn’t require a central
server.

▶ Most CRDTs algorithms assume participating peers strictly
follows the protocol, i.e. they are not Byzantine fault tolerant
(BFT).

▶ However, open peer-to-peer systems allow anyone to join or
leave, hence the assumption is not safe.

5

Motivation

▶ CRDTs are widely believed to be the solution for replication in
peer-to-peer systems because it doesn’t require a central
server.

▶ Most CRDTs algorithms assume participating peers strictly
follows the protocol, i.e. they are not Byzantine fault tolerant
(BFT).

▶ However, open peer-to-peer systems allow anyone to join or
leave, hence the assumption is not safe.

6

BFT CRDTs vs BFT Consensus

▶ BFT Consensus requires a total order broadcast, which is
unnecessary overhead for CRDTs.

▶ BFT Consensus provably requires the Byzantine peers to be
less than 1/3 of the total peers, where as BFT CRDTs should
be able to tolerate any number of Byzantine peers.

▶ BFT Consensus and BFT CRDTs are fundementally different.

6

BFT CRDTs vs BFT Consensus

▶ BFT Consensus requires a total order broadcast, which is
unnecessary overhead for CRDTs.

▶ BFT Consensus provably requires the Byzantine peers to be
less than 1/3 of the total peers, where as BFT CRDTs should
be able to tolerate any number of Byzantine peers.

▶ BFT Consensus and BFT CRDTs are fundementally different.

6

BFT CRDTs vs BFT Consensus

▶ BFT Consensus requires a total order broadcast, which is
unnecessary overhead for CRDTs.

▶ BFT Consensus provably requires the Byzantine peers to be
less than 1/3 of the total peers, where as BFT CRDTs should
be able to tolerate any number of Byzantine peers.

▶ BFT Consensus and BFT CRDTs are fundementally different.

7

Eventual Delivery
Version vectors are not safe

▶ Peer A sends two different
updates with the same
version vector.

▶ Peer B and C exchange their
version vectors and believe
that their updates are the
same.

r

p

q

7

Eventual Delivery
Version vectors are not safe

▶ Peer A sends two different
updates with the same
version vector.

▶ Peer B and C exchange their
version vectors and believe
that their updates are the
same.

r

p

q

(r ,
1)

: u

(r , 1) : v

7

Eventual Delivery
Version vectors are not safe

▶ Peer A sends two different
updates with the same
version vector.

▶ Peer B and C exchange their
version vectors and believe
that their updates are the
same.

r

p

q

(r:1, p:0, q:0)
{u}

(r:1, p:0, q:0)
{v}

ex
ch

an
ge

8

Eventual Delivery
A Naive BFT Protocol

▶ If a peer periodically sends updates it doesn’t receive from
another peer, and vice versa, the eventual delivery is
guaranteed.

▶ However it is highly inefficient.

9

Eventual Delivery
Hash DAG for BFT Eventual Delivery

▶ A hash DAG is a directed acyclic graph where each node has a
value (i.e. an update in our context) and a set of hashes,
which resolve to its predecessors. (like Git)

▶ The ancestor relation between the operations in the hash DAG
reflects the causal dependency between the operations.

null | u1

n1
H(n1) | u2

n2

H(n1) | u3

n3

H(n2) | u4

n4

H(n4), H(n3) | u5

n5

H(n3) | u6

n6

9

Eventual Delivery
Hash DAG for BFT Eventual Delivery

▶ A hash DAG is a directed acyclic graph where each node has a
value (i.e. an update in our context) and a set of hashes,
which resolve to its predecessors. (like Git)

▶ The ancestor relation between the operations in the hash DAG
reflects the causal dependency between the operations.

null | u1

n1
H(n1) | u2

n2

H(n1) | u3

n3

H(n2) | u4

n4

H(n4), H(n3) | u5

n5

H(n3) | u6

n6

10

Eventual Delivery
Hash DAG for BFT Eventual Delivery

Theorem
The heads of a hash DAG is the set of nodes with no successors. If
two peers have the same set of heads, their hash graphs, including
CRDT operations contained in the hash graphs must be same.

11

Convergence
Exploiting validity check

▶ Traditionally, a CRDT operation’s validity is checked before it
is broadcast to the peers. However, a malicious peer can skip
the validity check to cause problems.

p
Hllo

〈Insert “e” after “X” 〉 invalid!

11

Convergence
Exploiting validity check

▶ Traditionally, a CRDT operation’s validity is checked before it
is broadcast to the peers. However, a malicious peer can skip
the validity check to cause problems.

▶ Instead of relying on validity at the sender side, we shift the
validity check responsibility to receiver side.

12

Convergence
RGA as an example

However, naively moving the validity check to the receiver side
could cause inconsistent states.
(Insert, (A, id1), id2) means insert A with ID id1 after the element with ID
id2. If id2 is None, then A is inserted as the first element.

p r q

(Insert, (A, id1),None)

Up = {(Insert, (A, id1),None)}
Sp = [A]

(Insert, (B, id2), id1) Uq = {(Insert, (B, id2), id1)}
Sq = []

(Insert, (B, id2), id1)Up = {(Insert, (B, id2), id1),
(Insert, (A, id1),None)}

Sp = [A,B]

(Insert, (A, id1),None) Uq = {(Insert, (B, id2), id1),
(Insert, (A, id1),None)}
Sq = [A]

13

Convergence
Use ancestor-only checks

▶ If we can ensure that all peers make the same validity decision,
then we can avoid such problems.

▶ A way to achieve this is to have each peer only validate
operations based on the ancestors of the operation in the hash
DAG. This makes the validity check deterministic since all
peers share the same ancestors of the operation.

null | u1

n1
H(n1) | u2

n2

H(n1) | u3

n3

H(n2) | u4

n4

H(n4), H(n3) | u5

n5

H(n3) | u6

n6

New Update!

13

Convergence
Use ancestor-only checks

▶ If we can ensure that all peers make the same validity decision,
then we can avoid such problems.

▶ A way to achieve this is to have each peer only validate
operations based on the ancestors of the operation in the hash
DAG. This makes the validity check deterministic since all
peers share the same ancestors of the operation.

null | u1

n1
H(n1) | u2

n2

H(n1) | u3

n3

H(n2) | u4

n4

H(n4), H(n3) | u5

n5

H(n3) | u6

n6

New Update!

14

Convergence
Use ancestor-only checks

Theorem
If all correct peers follow the protocol, and each operation’s validity
is checked only against its ancestors in the hash DAG, then a valid
operation on one correct peer must also be a valid operation on all
other correct peers.

15

Convergence
Use ancestor-only checks

Even though p has element with ID id1, it still reject the update
because the element with ID id1 is not an ancestor of
(Insert, (B, id2), id1).

p r q

(Insert, (A
, id1),Non

e)

Up = {(Insert, (A, id1),None)}
Sp = [A]

(Insert, (B, id2), id1) Uq = {(Insert, (B, id2), id1)}
Sq = []

(Insert, (B
, id2), id1)Up = {(Insert, (B, id2), id1),

(Insert, (A, id1),None)}
Sp = [A]

(Insert, (A, id1),None) Uq = {(Insert, (B, id2), id1),
(Insert, (A, id1),None)}
Sq = [A]

15

Convergence
Use ancestor-only checks

Even though p has element with ID id1, it still reject the update
because the element with ID id1 is not an ancestor of
(Insert, (B, id2), id1).

p r q

(Insert, (A
, id1),Non

e)

Up = {(Insert, (A, id1),None)}
Sp = [A]

(Insert, (B, id2), id1) Uq = {(Insert, (B, id2), id1)}
Sq = []

(Insert, (B
, id2), id1)Up = {(Insert, (B, id2), id1),

(Insert, (A, id1),None)}
Sp = [A]

(Insert, (A, id1),None) Uq = {(Insert, (B, id2), id1),
(Insert, (A, id1),None)}
Sq = [A]

16

Convergence
Exploiting uniqueness of IDs

Many CRDT algorithms require unique IDs2. It is often achieved by
(unique peer-id, counter) traditionally, but a malicious peer can
simply use the same (unique peer-id, counter) for different
operations, resulting in divergence.

2Including ORSet, RGA, Logoot, Treedoc, etc.

17

Convergence
RGA as an example

p r q

(Insert, (A, id1),None)

Up = {(Insert, (A, id1),None)}
Sp = [A]

(Insert, (A, id1),None) Uq = {(Insert, (A, id1),None)}
Sq = [A]

(Insert, (B, id2),None)Up = {(Insert, (B, id2),None),
(Insert, (A, id1),None)}

Sp = [B,A]

(Insert, (C , id2), id1) Uq = {(Insert, (C , id2), id1),
(Insert, (A, id1),None)}
Sq = [A,C]

(Insert, (D, id3), id2)Up = {(Insert, (D, id3), id2),
(Insert, (B, id2),None),
(Insert, (A, id1),None)}

Sp = [B,D,A]

(Insert, (D, id3), id2)
Uq = {(Insert, (D, id3), id2),
(Insert, (C , id2), id1),
(Insert, (A, id1),None)}
Sq = [A,C ,D]

(Insert, (B, id2),None)
Uq = {(Insert, (D, id3), id2)
(Insert, (B, id2),None)
(Insert, (C , id2), id1),
(Insert, (A, id1),None)}
Sq = [B,A,C ,D]

(Insert,
(C , id2), id1)

Up = {(Insert, (D, id3), id2)
(Insert, (B, id2),None)
(Insert, (C , id2), id1),

(Insert, (A, id1),None)}
Sq = [B,D,A,C]

17

Convergence
RGA as an example

p r q

(Insert, (A, id1),None)

Up = {(Insert, (A, id1),None)}
Sp = [A]

(Insert, (A, id1),None) Uq = {(Insert, (A, id1),None)}
Sq = [A]

(Insert, (B, id2),None)Up = {(Insert, (B, id2),None),
(Insert, (A, id1),None)}

Sp = [B,A]

(Insert, (C , id2), id1) Uq = {(Insert, (C , id2), id1),
(Insert, (A, id1),None)}
Sq = [A,C]

(Insert, (D, id3), id2)Up = {(Insert, (D, id3), id2),
(Insert, (B, id2),None),
(Insert, (A, id1),None)}

Sp = [B,D,A]

(Insert, (D, id3), id2)
Uq = {(Insert, (D, id3), id2),
(Insert, (C , id2), id1),
(Insert, (A, id1),None)}
Sq = [A,C ,D]

(Insert, (B, id2),None)
Uq = {(Insert, (D, id3), id2)
(Insert, (B, id2),None)
(Insert, (C , id2), id1),
(Insert, (A, id1),None)}
Sq = [B,A,C ,D]

(Insert,
(C , id2), id1)

Up = {(Insert, (D, id3), id2)
(Insert, (B, id2),None)
(Insert, (C , id2), id1),

(Insert, (A, id1),None)}
Sq = [B,D,A,C]

17

Convergence
RGA as an example

p r q

(Insert, (A, id1),None)

Up = {(Insert, (A, id1),None)}
Sp = [A]

(Insert, (A, id1),None) Uq = {(Insert, (A, id1),None)}
Sq = [A]

(Insert, (B, id2),None)Up = {(Insert, (B, id2),None),
(Insert, (A, id1),None)}

Sp = [B,A]

(Insert, (C , id2), id1) Uq = {(Insert, (C , id2), id1),
(Insert, (A, id1),None)}
Sq = [A,C]

(Insert, (D, id3), id2)Up = {(Insert, (D, id3), id2),
(Insert, (B, id2),None),
(Insert, (A, id1),None)}

Sp = [B,D,A]

(Insert, (D, id3), id2)
Uq = {(Insert, (D, id3), id2),
(Insert, (C , id2), id1),
(Insert, (A, id1),None)}
Sq = [A,C ,D]

(Insert, (B, id2),None)
Uq = {(Insert, (D, id3), id2)
(Insert, (B, id2),None)
(Insert, (C , id2), id1),
(Insert, (A, id1),None)}
Sq = [B,A,C ,D]

(Insert,
(C , id2), id1)

Up = {(Insert, (D, id3), id2)
(Insert, (B, id2),None)
(Insert, (C , id2), id1),

(Insert, (A, id1),None)}
Sq = [B,D,A,C]

17

Convergence
RGA as an example

p r q

(Insert, (A, id1),None)

Up = {(Insert, (A, id1),None)}
Sp = [A]

(Insert, (A, id1),None) Uq = {(Insert, (A, id1),None)}
Sq = [A]

(Insert, (B, id2),None)Up = {(Insert, (B, id2),None),
(Insert, (A, id1),None)}

Sp = [B,A]

(Insert, (C , id2), id1) Uq = {(Insert, (C , id2), id1),
(Insert, (A, id1),None)}
Sq = [A,C]

(Insert, (D, id3), id2)Up = {(Insert, (D, id3), id2),
(Insert, (B, id2),None),
(Insert, (A, id1),None)}

Sp = [B,D,A]

(Insert, (D, id3), id2)
Uq = {(Insert, (D, id3), id2),
(Insert, (C , id2), id1),
(Insert, (A, id1),None)}
Sq = [A,C ,D]

(Insert, (B, id2),None)
Uq = {(Insert, (D, id3), id2)
(Insert, (B, id2),None)
(Insert, (C , id2), id1),
(Insert, (A, id1),None)}
Sq = [B,A,C ,D]

(Insert,
(C , id2), id1)

Up = {(Insert, (D, id3), id2)
(Insert, (B, id2),None)
(Insert, (C , id2), id1),

(Insert, (A, id1),None)}
Sq = [B,D,A,C]

18

Convergence
Use hash as IDs

▶ Instead of relying on the sender to provide an unique ID, we let
each peer generate the ID by using the hash of the node that
contains the operation.

▶ Since the hash function is collision-resistant, and the nodes in
the hash DAG are unique, the IDs are unique.

19

Questions

▶ How to prove the theorems we stated in the previous sections
in Byzantine envionment?

▶ How to ensure we have ruled out all possible vulnerabilities for
a particular CRDT?

20

Our Contributions

▶ We model a peer-to-peer system consisting of indefinitely
many peers in Isabelle/HOL, a formal proof assistant.

▶ The system only assumes a collision-resistant hash function,
and we place no other assumptions on the system.

▶ We proved the theorems that we claimed previously in
Isabelle/HOL.

▶ Using those theorems, one can verify the correctness of the
resulting BFT CRDTs by proving some simple properties.3

3L Da and M Kleppmann. A Framework for Designing and Verifying Byzantine Fault Tolerant
CRDTs. Version 0.0.1. https://github.com/LiangrunDa/bft-crdt-isabelle. Oct. 2024.

https://github.com/LiangrunDa/bft-crdt-isabelle

20

Our Contributions

▶ We model a peer-to-peer system consisting of indefinitely
many peers in Isabelle/HOL, a formal proof assistant.

▶ The system only assumes a collision-resistant hash function,
and we place no other assumptions on the system.

▶ We proved the theorems that we claimed previously in
Isabelle/HOL.

▶ Using those theorems, one can verify the correctness of the
resulting BFT CRDTs by proving some simple properties.3

3L Da and M Kleppmann. A Framework for Designing and Verifying Byzantine Fault Tolerant
CRDTs. Version 0.0.1. https://github.com/LiangrunDa/bft-crdt-isabelle. Oct. 2024.

https://github.com/LiangrunDa/bft-crdt-isabelle

20

Our Contributions

▶ We model a peer-to-peer system consisting of indefinitely
many peers in Isabelle/HOL, a formal proof assistant.

▶ The system only assumes a collision-resistant hash function,
and we place no other assumptions on the system.

▶ We proved the theorems that we claimed previously in
Isabelle/HOL.

▶ Using those theorems, one can verify the correctness of the
resulting BFT CRDTs by proving some simple properties.3

3L Da and M Kleppmann. A Framework for Designing and Verifying Byzantine Fault Tolerant
CRDTs. Version 0.0.1. https://github.com/LiangrunDa/bft-crdt-isabelle. Oct. 2024.

https://github.com/LiangrunDa/bft-crdt-isabelle

20

Our Contributions

▶ We model a peer-to-peer system consisting of indefinitely
many peers in Isabelle/HOL, a formal proof assistant.

▶ The system only assumes a collision-resistant hash function,
and we place no other assumptions on the system.

▶ We proved the theorems that we claimed previously in
Isabelle/HOL.

▶ Using those theorems, one can verify the correctness of the
resulting BFT CRDTs by proving some simple properties.3

3L Da and M Kleppmann. A Framework for Designing and Verifying Byzantine Fault Tolerant
CRDTs. Version 0.0.1. https://github.com/LiangrunDa/bft-crdt-isabelle. Oct. 2024.

https://github.com/LiangrunDa/bft-crdt-isabelle

21

Formalization

To prove a BFT CRDT correct, one needs to prove the following
three properties:
▶ Concurrent operations commute.
▶ The validity check only depends on the ancestors of the

operation.
▶ It never fails on a valid operation.

22

Formalization

Then the following theorems are automatically proved:

theorem sec-convergence:
assumes ‹heads (graph i) = heads (graph j)›
shows ‹apply-operations (delivered-nodes i) = apply-operations

(delivered-nodes j)›

theorem sec-progress: ‹apply-operations (delivered-nodes i) ̸= None›

23

Evaluation

▶ We applied our method to two well-known CRDTs, RGA and
ORSet, and obtained two BFT CRDTs.

▶ We proved the correctness of the two BFT CRDTs formally
using only 244 and 522 LoC respectively.

24

Conclusion

▶ We analyzed the possible vulnerabilities of traditional CRDTs
under Strong Eventual Consistency model.

▶ We proposed several approaches to prevent the vulnerabilities.
▶ We formalized the system in Isabelle/HOL and proved the

correctness of the proposed approaches.
▶ Our framework along with the theorems can be used to verify

the correctness of a BFT CRDT by proving some simple
properties. We evaluated our framework on ORSet and RGA.

24

Conclusion

▶ We analyzed the possible vulnerabilities of traditional CRDTs
under Strong Eventual Consistency model.

▶ We proposed several approaches to prevent the vulnerabilities.

▶ We formalized the system in Isabelle/HOL and proved the
correctness of the proposed approaches.

▶ Our framework along with the theorems can be used to verify
the correctness of a BFT CRDT by proving some simple
properties. We evaluated our framework on ORSet and RGA.

24

Conclusion

▶ We analyzed the possible vulnerabilities of traditional CRDTs
under Strong Eventual Consistency model.

▶ We proposed several approaches to prevent the vulnerabilities.
▶ We formalized the system in Isabelle/HOL and proved the

correctness of the proposed approaches.

▶ Our framework along with the theorems can be used to verify
the correctness of a BFT CRDT by proving some simple
properties. We evaluated our framework on ORSet and RGA.

24

Conclusion

▶ We analyzed the possible vulnerabilities of traditional CRDTs
under Strong Eventual Consistency model.

▶ We proposed several approaches to prevent the vulnerabilities.
▶ We formalized the system in Isabelle/HOL and proved the

correctness of the proposed approaches.
▶ Our framework along with the theorems can be used to verify

the correctness of a BFT CRDT by proving some simple
properties. We evaluated our framework on ORSet and RGA.

25

Backup Slides

locale bft-strong-eventual-consistency = peers-with-arbitrary-history +
assumes sem-check-only-ancestors-relevant:

‹(ancestor-nodes-of n) ⊆ fset G =⇒ is-sem-valid-set
(ancestor-nodes-of n) n ←→ is-sem-valid G n›
assumes concurrent-opers-commute: ‹hb.concurrent-ops-commute

(delivered-nodes i)›
assumes step-never-fails: ‹apply-history ([], {||}) ns = (dn, G) =⇒

no-failure dn =⇒
check-and-apply (dn, G) (hs, v) = (dn ′, G ′) =⇒ no-failure dn ′›

