
Extending JSON CRDTs with move operations

Liangrun Da, Martin Kleppmann

April, 2024

1

Contents

1. Introduction

2. Algorithm

3. Evaluation

2

Introduction

Why move?

It is everywhere!

• In distributed file systems, we move a directory from one place to another

• In collaborative to-do lists, we reorder tasks

• In collaborative drawing tools, we move layers up and down

• ...

3

Why is it hard?

1. Concurrent move operations might cause duplicates and cycles

2. Interactions between concurrent move and non-move operations might cause

unexpected result and even inconsistency.

4

Duplicate

Replica 1:

Replica 2:

root

A B C

root

A B C

root

A

B

C

root

A C

B

?

?

Move B to be

a child of A

Move B to be

a child of C

n
et
w
or
k

co
m
m
u
n
ic
at
io
n

(a) root

A

B

C

B ′

(b)root

A B C

(c) root

A

B

C

(d)root

A C

B

Figure 1: Concurrent moving the same element might cause duplicate nodes.

5

Duplicate

Replica 1:

Replica 2:

root

A B C

root

A B C

root

A

B

C

root

A C

B

?

?

Move B to be

a child of A

Move B to be

a child of C

n
et
w
or
k

co
m
m
u
n
ic
at
io
n

(a) root

A

B

C

B ′

(b)root

A B C

(c) root

A

B

C

(d)root

A C

B

Figure 1: Concurrent moving the same element might cause duplicate nodes.

5

Duplicate

Replica 1:

Replica 2:

root

A B C

root

A B C

root

A

B

C

root

A C

B

?

?

Move B to be

a child of A

Move B to be

a child of C

n
et
w
or
k

co
m
m
u
n
ic
at
io
n

(a) root

A

B

C

B ′

(b)root

A B C

(c) root

A

B

C

(d)root

A C

B

Figure 1: Concurrent moving the same element might cause duplicate nodes.

5

Duplicate

Replica 1:

Replica 2:

root

A B C

root

A B C

root

A

B

C

root

A C

B

?

?

Move B to be

a child of A

Move B to be

a child of C

n
et
w
or
k

co
m
m
u
n
ic
at
io
n

(a) root

A

B

C

B ′

(b)root

A B C

(c) root

A

B

C

(d)root

A C

B

Figure 1: Concurrent moving the same element might cause duplicate nodes.

5

Duplicate

Replica 1:

Replica 2:

root

A B C

root

A B C

root

A

B

C

root

A C

B

?

?

Move B to be

a child of A

Move B to be

a child of C

n
et
w
or
k

co
m
m
u
n
ic
at
io
n

(a) root

A

B

C

B ′

(b)root

A B C

(c) root

A

B

C

(d)root

A C

B

Figure 1: Concurrent moving the same element might cause duplicate nodes.

5

Cycle

Replica 1:

Replica 2:

root

A B

root

A B

root

A

B

root

B

A

?

?

Move B to be

a child of A

Move A to be

a child of B

n
et
w
or
k

co
m
m
u
n
ic
at
io
n

(a) root

A

B

(b)root

A

B

B ′

A′

(c) root

A

B

(d)root

B

A

Figure 2: Concurrent moves might cause cycles.

6

Cycle

Replica 1:

Replica 2:

root

A B

root

A B

root

A

B

root

B

A

?

?

Move B to be

a child of A

Move A to be

a child of B

n
et
w
or
k

co
m
m
u
n
ic
at
io
n

(a) root

A

B

(b)root

A

B

B ′

A′

(c) root

A

B

(d)root

B

A

Figure 2: Concurrent moves might cause cycles.

6

Cycle

Replica 1:

Replica 2:

root

A B

root

A B

root

A

B

root

B

A

?

?

Move B to be

a child of A

Move A to be

a child of B

n
et
w
or
k

co
m
m
u
n
ic
at
io
n

(a) root

A

B

(b)root

A

B

B ′

A′

(c) root

A

B

(d)root

B

A

Figure 2: Concurrent moves might cause cycles.

6

Cycle

Replica 1:

Replica 2:

root

A B

root

A B

root

A

B

root

B

A

?

?

Move B to be

a child of A

Move A to be

a child of B

n
et
w
or
k

co
m
m
u
n
ic
at
io
n

(a) root

A

B

(b)root

A

B

B ′

A′

(c) root

A

B

(d)root

B

A

Figure 2: Concurrent moves might cause cycles.

6

Cycle

Replica 1:

Replica 2:

root

A B

root

A B

root

A

B

root

B

A

?

?

Move B to be

a child of A

Move A to be

a child of B

n
et
w
or
k

co
m
m
u
n
ic
at
io
n

(a) root

A

B

(b)root

A

B

B ′

A′

(c) root

A

B

(d)root

B

A

Figure 2: Concurrent moves might cause cycles.

6

Delete operation might cancel a cycle

Replica 1:

Replica 2:

Replica 3:

root

A B

C

root

A B

C

root

A B

C

root

A

B

C

root

B

C

A

root

A B

root

B
root

Op1: Move B to

be a child of A

Op3: Move A to

be a child of C

Op2: Delete C Receive Op3 Receive Op1

Figure 3: With a concurrent delete operation, two move operations no longer form a cycle and

can be both executed. 7

Overwriting a key that is moved

Replica 1:

Replica 2:

k1 : A

k2 : B

k1 : A

k2 : B

k1 : A → B

k2 : null

k1 : null

k2 : B → A

k1 : A → B

k2 : C
?

Move B to be

a child of A

Overwrite

k2 with C

Move A to be

a child of B

k1 : null

k2 : C

k1 : null

k2 : B → A

k1 : null

k2 : {C ,B → A}
k1 : A → B

k2 : C

Figure 4: C overwrites k2 where the object B is moved, it might lose value if the move

operation is considered invalid later.

8

Overwriting a key that is moved

Replica 1:

Replica 2:

k1 : A

k2 : B

k1 : A

k2 : B

k1 : A → B

k2 : null

k1 : null

k2 : B → A

k1 : A → B

k2 : C
?

Move B to be

a child of A

Overwrite

k2 with C

Move A to be

a child of B

k1 : null

k2 : C

k1 : null

k2 : B → A

k1 : null

k2 : {C ,B → A}
k1 : A → B

k2 : C

Figure 4: C overwrites k2 where the object B is moved, it might lose value if the move

operation is considered invalid later.

8

Overwriting a key that is moved

Replica 1:

Replica 2:

k1 : A

k2 : B

k1 : A

k2 : B

k1 : A → B

k2 : null

k1 : null

k2 : B → A

k1 : A → B

k2 : C
?

Move B to be

a child of A

Overwrite

k2 with C

Move A to be

a child of B

k1 : null

k2 : C

k1 : null

k2 : B → A

k1 : null

k2 : {C ,B → A}
k1 : A → B

k2 : C

Figure 4: C overwrites k2 where the object B is moved, it might lose value if the move

operation is considered invalid later.

8

Overwriting a key that is moved

Replica 1:

Replica 2:

k1 : A

k2 : B

k1 : A

k2 : B

k1 : A → B

k2 : null

k1 : null

k2 : B → A

k1 : A → B

k2 : C
?

Move B to be

a child of A

Overwrite

k2 with C

Move A to be

a child of B

k1 : null

k2 : C

k1 : null

k2 : B → A

k1 : null

k2 : {C ,B → A}

k1 : A → B

k2 : C

Figure 4: C overwrites k2 where the object B is moved, it might lose value if the move

operation is considered invalid later.

8

Overwriting a key that is moved

Replica 1:

Replica 2:

k1 : A

k2 : B

k1 : A

k2 : B

k1 : A → B

k2 : null

k1 : null

k2 : B → A

k1 : A → B

k2 : C
?

Move B to be

a child of A

Overwrite

k2 with C

Move A to be

a child of B

k1 : null

k2 : C

k1 : null

k2 : B → A

k1 : null

k2 : {C ,B → A}
k1 : A → B

k2 : C

Figure 4: C overwrites k2 where the object B is moved, it might lose value if the move

operation is considered invalid later.

8

Algorithm

Automerge: Example JSON Document

A: a,

B: [b1, b2, b3],

C: {
D: d

}

ID Type Object ID Key Value Predecessors

⟨1, 0⟩ put ⟨0, 0⟩ A a

⟨2, 0⟩ make ⟨0, 0⟩ B list

⟨6, 0⟩ make ⟨0, 0⟩ C map

⟨7, 0⟩ put ⟨6, 0⟩ D d

⟨3, 0⟩ put ⟨2, 0⟩ ⟨0, 0⟩ b1

⟨4, 0⟩ put ⟨2, 0⟩ ⟨3, 0⟩ b2

⟨5, 0⟩ put ⟨2, 0⟩ ⟨4, 0⟩ b3

⟨8, 0⟩ delete ⟨3, 0⟩

Internal OpSet

Figure 5: An example JSON document with its internal OpSet

9

Generating Move Operations

A: a,

B: [b1, b2, d, b3],

C: {}

ID Type Object ID Key Value Predecessors MoveID

⟨1, 0⟩ put ⟨0, 0⟩ A a

⟨2, 0⟩ make ⟨0, 0⟩ B list

⟨6, 0⟩ make ⟨0, 0⟩ C map

⟨7, 0⟩ put ⟨6, 0⟩ D d

⟨3, 0⟩ put ⟨2, 0⟩ ⟨0, 0⟩ b1

⟨4, 0⟩ put ⟨2, 0⟩ ⟨3, 0⟩ b2

⟨5, 0⟩ put ⟨2, 0⟩ ⟨4, 0⟩ b3

⟨8, 0⟩ delete ⟨3, 0⟩
⟨9, 0⟩ move ⟨2, 0⟩ ⟨4, 0⟩ d ⟨7, 0⟩ ⟨7, 0⟩

Internal OpSet

Figure 6: Moving d to be an element of list B

10

Validity Check

We define a move operation to be valid if and only if:

• It does not introduce any cycles.

• There is no concurrent move operation with a greater ID that moves the same

element.

11

Validity Check: A naive approach

Whenever an operation is added:

1. Reapply all the operations in ascending ID order and check the validity of each

operation

2. If an operation introduces a cycle, it is invalid

3. If an operation is valid, all the operations that move the same element with lower

IDs are invalid

12

Replica 1:

Replica 2: Make A Make B Make C Move B to A Move C to B

Make A Make B Make C Move B to C

root

A B C

13

Make A Make B Make C Move B to A Move B to C Move C to B

root

Ascending ID order

14

Make A Make B Make C Move B to A Move B to C Move C to B

root

A

15

Make A Make B Make C Move B to A Move B to C Move C to B

root

A B

16

Make A Make B Make C Move B to A Move B to C Move C to B

root

A B C

17

Make A Make B Make C Move B to A Move B to C Move C to B

root

A

B

C

18

Make A Make B Make C Move B to A Move B to C Move C to B

root

A C

B

19

Make A Make B Make C Move B to A Move B to C Move C to B

root

A C

B

20

Validity Check: An optimized approach

Whenever adding a new operation, the process of reapplying operations with lower IDs

remains the same.

1. Revert all the operations with greater IDs

2. Apply the new operation and check its validity

3. Reapply the reverted operations in ascending ID order and update the validity

21

Before replica2 receives the new operation from replica1:

Make A Make B Make C Move B to A Move C to B

root

A

B

C

Ascending ID order

22

After replica2 receives the new operation from replica1:

Make A Make B Make C Move B to A Move B to C Move C to B

root

A

B

C

Ascending ID order

23

Revert:

Make A Make B Make C Move B to A Move B to C Move C to B

root

A

B

C

24

Apply:

Make A Make B Make C Move B to A Move B to C Move C to B

root

A

B

C

25

Reapply:

Make A Make B Make C Move B to A Move B to C Move C to B

root

A C

B

26

Make A Make B Make C Move B to A Move B to C Move C to B

root

A C

B

27

Validity Check: Further Optimization

• Batch Updating: Run revert-apply-reapply for a batch of new operations

• Lifecycle tracking: Avoid reverting and reapplying non-move operations as they

are always valid

28

Batch Updating

Replica 2 might receive multiple operations at once and we can do revert-apply-reapply

once for all remote operations

Make A Make B Make C Move B to A Move B to C ... Move A to C Move C to B

root

A

B

C

Ascending ID order

29

Lifecycle tracking

Replica 1:

Replica 2:

Replica 3:

root

A B

C

root

A B

C

root

A B

C

root

A

B

C

root

B

C

A

root

A B

root

B
root

Op1: Move B to

be a child of A

Op3: Move A to

be a child of C

Op2: Delete C Receive Op3 Receive Op1

Figure 7: With a concurrent delete operation, two move operations no longer form a cycle and

can be both executed. 30

Lifecycle tracking

⟨1, 0⟩ Make A ⟨2, 0⟩ Make B ⟨3, 0⟩ Make C

root

A

B

C trash

Ascending ID order

31

Lifecycle tracking

⟨1, 0⟩ Make A ⟨2, 0⟩ Make B ⟨3, 0⟩ Make C ⟨4, 0⟩Move A to C

root

C

A

B

trash

Ascending ID order

32

Lifecycle tracking

⟨1, 0⟩ Make A ⟨2, 0⟩ Make B ⟨3, 0⟩ Make C ⟨4, 0⟩Move A to C ⟨4, 2⟩Delete A

root

C

trash

A

B

Ascending ID order

33

Lifecycle tracking

⟨1, 0⟩ Make A ⟨2, 0⟩ Make B ⟨3, 0⟩ Make C ⟨4, 0⟩Move A to C ⟨4, 2⟩Delete A

⟨4, 3⟩Move C to A

root

C

trash

A

B

Ascending ID order

34

Lifecycle tracking

⟨1, 0⟩ Make A ⟨2, 0⟩ Make B ⟨3, 0⟩ Make C ⟨4, 0⟩Move A to C ⟨4, 2⟩Delete A

⟨4, 1⟩Move C to A

root

C

trash

A

B

Ascending ID order

35

Lifecycle tracking

⟨1, 0⟩ Make A ⟨2, 0⟩ Make B ⟨3, 0⟩ Make C ⟨4, 0⟩Move A to C ⟨4, 2⟩Delete A

⟨4, 1⟩Move C to A

root

C

A

B

trash

Ascending ID order

36

Lifecycle tracking

⟨4, 0⟩Move A to C

⟨4, 1⟩Move C to A

root

C : [⟨3, 0⟩]

A : [⟨1, 0⟩, ⟨4, 0⟩, ⟨4, 2⟩]

B : [⟨2, 0⟩]

Ascending ID order

37

Lifecycle tracking

⟨4, 0⟩Move A to C

⟨4, 3⟩Move C to A

root

C : [⟨3, 0⟩]

A : [⟨1, 0⟩, ⟨4, 0⟩, ⟨4, 2⟩]

B : [⟨2, 0⟩]

Ascending ID order

38

Evaluation

Miliseconds to converge two replicas with 10k operations diverged!

100 101 102 103 104

Number of move operations diverged

101

102

103

104

105

106

107

108

109

Co
nv

er
ge

nc
e

tim
e

(μ
s)

RAR approach
without batch updating

RAR approach
with batch updating

Figure 8: Convergence time of two actors that diverge by move operations

39

Overhead caused by move support is acceptable

100 101 102 103 104

Number of operations diverged

101

102

103

104

105

106

107

108

109

Av
er

ag
e

co
nv

er
ge

nc
e

tim
e

(μ
s)

Move support enabled
without lifecycle tracking

Move support disabled

Move support
enabled with
lifecycle tracking

Figure 9: Convergence time of two actors that diverge by non-move operations

40

Random correctness testing

There were plenty of corner cases to consider:

1. Randomly generate move operations and apply them to a JSON object

2. Exchange the operations between replicas

3. Check if the JSON object is the same across all replicas

The test discovered a few bugs in the implementation, which were fixed.

41

Summary

• Extending move operations is feasible in a collaborative setting without major

performance cost

• The move algorithm take care of potential duplicates and cycles and other corner

cases

42

	Introduction
	Algorithm
	Evaluation

