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Introduction



Why move?

It is everywhere!

• In distributed file systems, we move a directory from one place to another

• In collaborative to-do lists, we reorder tasks

• In collaborative drawing tools, we move layers up and down

• ...
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Why is it hard?

1. Concurrent move operations might cause duplicates and cycles

2. Interactions between concurrent move and non-move operations might cause

unexpected result and even inconsistency.
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Figure 1: Concurrent moving the same element might cause duplicate nodes.
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Cycle
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Delete operation might cancel a cycle
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Figure 3: With a concurrent delete operation, two move operations no longer form a cycle and

can be both executed. 7



Overwriting a key that is moved
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Figure 4: C overwrites k2 where the object B is moved, it might lose value if the move

operation is considered invalid later.
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Algorithm



Automerge: Example JSON Document

A: a,

B: [ b1, b2, b3],

C: {
D: d

}

ID Type Object ID Key Value Predecessors

⟨1, 0⟩ put ⟨0, 0⟩ A a

⟨2, 0⟩ make ⟨0, 0⟩ B list

⟨6, 0⟩ make ⟨0, 0⟩ C map

⟨7, 0⟩ put ⟨6, 0⟩ D d

⟨3, 0⟩ put ⟨2, 0⟩ ⟨0, 0⟩ b1

⟨4, 0⟩ put ⟨2, 0⟩ ⟨3, 0⟩ b2

⟨5, 0⟩ put ⟨2, 0⟩ ⟨4, 0⟩ b3

⟨8, 0⟩ delete ⟨3, 0⟩

Internal OpSet

Figure 5: An example JSON document with its internal OpSet
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Generating Move Operations

A: a,

B: [b1, b2, d, b3],

C: {}

ID Type Object ID Key Value Predecessors MoveID

⟨1, 0⟩ put ⟨0, 0⟩ A a

⟨2, 0⟩ make ⟨0, 0⟩ B list

⟨6, 0⟩ make ⟨0, 0⟩ C map

⟨7, 0⟩ put ⟨6, 0⟩ D d

⟨3, 0⟩ put ⟨2, 0⟩ ⟨0, 0⟩ b1

⟨4, 0⟩ put ⟨2, 0⟩ ⟨3, 0⟩ b2

⟨5, 0⟩ put ⟨2, 0⟩ ⟨4, 0⟩ b3

⟨8, 0⟩ delete ⟨3, 0⟩
⟨9, 0⟩ move ⟨2, 0⟩ ⟨4, 0⟩ d ⟨7, 0⟩ ⟨7, 0⟩

Internal OpSet

Figure 6: Moving d to be an element of list B
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Validity Check

We define a move operation to be valid if and only if:

• It does not introduce any cycles.

• There is no concurrent move operation with a greater ID that moves the same

element.
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Validity Check: A naive approach

Whenever an operation is added:

1. Reapply all the operations in ascending ID order and check the validity of each

operation

2. If an operation introduces a cycle, it is invalid

3. If an operation is valid, all the operations that move the same element with lower

IDs are invalid
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Replica 1:

Replica 2: Make A Make B Make C Move B to A Move C to B

Make A Make B Make C Move B to C

root

A B C
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Make A Make B Make C Move B to A Move B to C Move C to B

root

Ascending ID order
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root
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Validity Check: An optimized approach

Whenever adding a new operation, the process of reapplying operations with lower IDs

remains the same.

1. Revert all the operations with greater IDs

2. Apply the new operation and check its validity

3. Reapply the reverted operations in ascending ID order and update the validity

21



Before replica2 receives the new operation from replica1:
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Ascending ID order
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After replica2 receives the new operation from replica1:

Make A Make B Make C Move B to A Move B to C Move C to B

root
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Ascending ID order
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Revert:
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Apply:

Make A Make B Make C Move B to A Move B to C Move C to B

root
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Reapply:

Make A Make B Make C Move B to A Move B to C Move C to B

root

A C

B

26



Make A Make B Make C Move B to A Move B to C Move C to B

root

A C

B
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Validity Check: Further Optimization

• Batch Updating: Run revert-apply-reapply for a batch of new operations

• Lifecycle tracking: Avoid reverting and reapplying non-move operations as they

are always valid
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Batch Updating

Replica 2 might receive multiple operations at once and we can do revert-apply-reapply

once for all remote operations

Make A Make B Make C Move B to A Move B to C ... Move A to C Move C to B

root

A

B

C

Ascending ID order
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Lifecycle tracking
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Figure 7: With a concurrent delete operation, two move operations no longer form a cycle and

can be both executed. 30



Lifecycle tracking

⟨1, 0⟩ Make A ⟨2, 0⟩ Make B ⟨3, 0⟩ Make C

root

A

B

C trash

Ascending ID order
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Lifecycle tracking
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Lifecycle tracking
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Lifecycle tracking
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Lifecycle tracking
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Lifecycle tracking
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Lifecycle tracking

⟨4, 0⟩Move A to C

⟨4, 1⟩Move C to A

root

C : [⟨3, 0⟩]

A : [⟨1, 0⟩, ⟨4, 0⟩, ⟨4, 2⟩]

B : [⟨2, 0⟩]

Ascending ID order
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Lifecycle tracking

⟨4, 0⟩Move A to C
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B : [⟨2, 0⟩]

Ascending ID order
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Evaluation



Miliseconds to converge two replicas with 10k operations diverged!
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Figure 8: Convergence time of two actors that diverge by move operations
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Overhead caused by move support is acceptable
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Figure 9: Convergence time of two actors that diverge by non-move operations
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Random correctness testing

There were plenty of corner cases to consider:

1. Randomly generate move operations and apply them to a JSON object

2. Exchange the operations between replicas

3. Check if the JSON object is the same across all replicas

The test discovered a few bugs in the implementation, which were fixed.
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Summary

• Extending move operations is feasible in a collaborative setting without major

performance cost

• The move algorithm take care of potential duplicates and cycles and other corner

cases
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