Extending JSON CRDTs with move operations

Liangrun Da, Martin Kleppmann
April, 2024

1. Introduction
2. Algorithm

3. Evaluation

Introduction

It is everywhere!

In distributed file systems, we move a directory from one place to another

In collaborative to-do lists, we reorder tasks

In collaborative drawing tools, we move layers up and down

Why is it hard?

1. Concurrent move operations might cause duplicates and cycles

2. Interactions between concurrent move and non-move operations might cause
unexpected result and even inconsistency.

Duplicate

Move B to be root
. root a child of A 70N
Replica 1: VIR A C ?
A B C \ Vo
B Vo8
v, X ®
v, 5 .8
WES
v 2 E
\
Move B to be root J ' g
] root a child of C 7N i 9
Replica 2: /1N A C ?
A B C \
B

Figure 1: Concurrent moving the same element might cause duplicate nodes.

Duplicate

Move B to be root
. root a child of A 70N
Replica 1: VIR A C ?
A B C \ Vo
B Vo8
v, X ®
v, 5 .8
WES
v 2 E
\
Move B to be root J ' g
] root a child of C 7N i 9
Replica 2: /1N A C ?
A B C \
B

Figure 1: Concurrent moving the same element might cause duplicate nodes.

Duplicate

Move B to be root
. root a child of A 70N
Replica 1: VIR A C ?
A B C \ Vo
B Vo8
v, X ®
v, 5 .8
WES
v 2 E
\
Move B to be root J ' g
] root a child of C 7N i 9
Replica 2: /1N A C ?
A B C \
B

Figure 1: Concurrent moving the same element might cause duplicate nodes.

Duplicate

Move B to be root
. root a child of A 70N
Replica 1: VIR A C ?
A B C \ Vo
B Vo8
v, X ®
v, 5 .8
WES
v 2 E
\
Move B to be root J ' g
] root a child of C 7N i 9
Replica 2: /1N A C ?
A B C \
B

Figure 1: Concurrent moving the same element might cause duplicate nodes.

Duplicate

Move B to be root
. root a child of A 70N
Replica 1: VIR A C ?
A B C | Vo
B Vo8
VX @
W) g LE)
]
N E
\
Move B to be root J ' 5
] root a child of C 7N i 9
Replica 2: / 1\ N A C ?
A B C I
B

Figure 1: Concurrent moving the same element might cause duplicate nodes.

Replica 1:

Replica 2:

root
VAN

root

VRN

Move B to be root

a child of A ‘ ,
7 U
1

Move A to be root

networ
communication

1
a child of B ‘ .
B Y ?
|

Figure 2: Concurrent moves might cause cycles.

Replica 1:

Replica 2:

root

/N

root

VRN

Move B to be root

a child of A ‘
A T ?
: H

Move A to be root f

< =" “network T~ >
communication

a child of B ‘ '
B g ?
|

Figure 2: Concurrent moves might cause cycles.

Replica 1:

Replica 2:

root
VAN

root
VRN

Move B to be root

a child of A ‘
A ?
|

A
B .-
VxR
W) g ‘é’
]
NEE
g 9 £
Move A to be root Y8
i | / |
a child of B B ! Y >
|
A

Figure 2: Concurrent moves might cause cycles.

—— Move B to be root
. root a child of A ‘
Replica 1: /N A — X ?
A B : l‘ l' c
B “ l’ g
v, X ®
/5 .8
nES
v 2 E
\
Move A to be root J ' g
_ root a child of B ‘ 3 v
Replica 2: VAN B g ?
A B \
A

Figure 2: Concurrent moves might cause cycles.

Replica 1:

Replica 2:

root

/N

root

VRN

Move B to be root

achildof A /‘4 I
7 : A 7 H
1

Move A to be root

networ
communication

1
a child of B ‘ .
y B Y E
|

Figure 2: Concurrent moves might cause cycles.

Delete operation might cancel a cycle

root
root Opl: Move B to |
. 7 N be a child of A A
Replica 1: | A B [
I B 3
I R
C S
root N
. VRN Op2: Delete C root Receive Op3| root ‘V Receive Opl
Replica 2: | A B N y e 3} root
| A B \ B
,
|
root '
root Op3: Move A to | '
. 7N be a child of C B ,
Replica 3: | A B [A o
| C
I
A

Figure 3: With a concurrent delete operation, two move operations no longer form a cycle and
can be both executed. 7

Overwriting a key that is moved

Move B to be Overwrite
. kit A a child of A ki :A— B ko with C kk:A— B
Replica 1: ?
ky : B ko = null ky: C 0
Move A to be ,’/
kit A hild of B | ky = null !
Replica 2: | " caee LR
ko : B ky:B— A

Figure 4: C overwrites k, where the object B is moved, it might lose value if the move

operation is considered invalid later.

Overwriting a key that is moved

Move B to be Overwrite
. kit A a child of A ki:A— B k2 with C kk:A— B
Replica 1:
ky : B ko = null ky: C
Move A to be ,”
ki: A hild of B | ky : null /!
Replica 2: | " caee b el LR
ko : B ky:B— A

Figure 4: C overwrites k, where the object B is moved, it might lose value if the move

operation is considered invalid later.

Overwriting a key that is moved

Move B to be Overwrite
. kit A a child of A k:A— B ko with C
Replica 1:
ky : B ko = null
Move A to be ,”
. kit A a child of B ky = null i
Replica 2: Loeooo o=
ko : B ky:B— A

Figure 4: C overwrites k, where the object B is moved, it might lose value if the move

operation is considered invalid later.

Overwriting a key that is moved

Move B to be Overwrite
. 1A a child of A ki :A— B ka2 with C kk:A— B
Replica 1:
ky : B ko = null ky: C
Move A to be ,’/
. ki:A | achidof B |k : null ! ky : null
Replica 2: Loeooo o=
ko B kp:B— A k2:{C,B— A}

Figure 4: C overwrites k, where the object B is moved, it might lose value if the move

operation is considered invalid later.

Overwriting a key that is moved

Overwrite
ko with C

Move B to be
. 1A a child of A kk:A—=B
Replica 1:
ky : B ko = null
Move A to be
kit A hild of B ki null
Replica 2: | * 2o 48
k2 : B kz :B— A

ky @ null
k2:{C,B — A}

Figure 4: C overwrites k, where the object B is moved, it might lose value if the move

operation is considered invalid later.

Algorithm

Automerge: Example JSON Document

ID Type | Object ID | Key | Value | Predecessors
(1,0) | put (0,0) A a
A: a, (2,0) | make (0,0) B list
B: [b1; b2, b3] Internal OpSet (80 | wele (0,0) < map
C (7,0) | put | (6,0) d
D: d (3,0) | put (2,0) | (0,0) | bl
} (4,0) | put (2,0) (3,0) b2
(5,0) | put (2,0) (4,0) b3
(8,0) | delete (3,0)

Figure 5: An example JSON document with its internal OpSet

Generating Move Operations

ID Type | Object ID | Key | Value | Predecessors | MovelD
(1,0) | put (0,0) A a
(2,0) | make (0,0) B list
(6,0) | make (0,0) C map
A: a, Internal OpSet | (7, 0) put (6,0) d
B: [b%, b2, d, b3], 3,0 | put | @20 |00 | b
¢ @0 | put | (2,0 |30]| b2
(5,0) | put (2,0) (4,0) | b3
(8,0) | delete (3,0)
(9,0) | move (2,0) (4,0) d (7,0) (7,0)

Figure 6: Moving d to be an element of list B

10

Validity Check

We define a move operation to be valid if and only if:

e |t does not introduce any cycles.

e There is no concurrent move operation with a greater ID that moves the same
element.

11

Validity Check: A naive approach

Whenever an operation is added:

1. Reapply all the operations in ascending ID order and check the validity of each
operation

2. If an operation introduces a cycle, it is invalid

3. If an operation is valid, all the operations that move the same element with lower
IDs are invalid

12

Replica 1:

Replica 2:

root

N

A B C

Move C to B

13

root

Make C

Move B to A

Move B to C

Move C to B

Ascending ID order

14

root

\ELCWA Make B Make C

Move B to A

Move B to C

Move C to B

15

Make A

Make B

Make C

Move B to A

Move B to C

Move C to B

16

Make A

Make B

A

Make C

TN

root

C

\EOVNEREWAN Move B to C

Move C to B

17

\ELCWA

Make B

Make C

VOV R WA Y (VW= RNEGl Move C to B

18

\ELCWA

Make B

Make C

Move B to A Move B to C Move C to B

19

\ELCWA

Make B

Make C

Move B to A Move B to C Move C to B

20

Validity Check: An optimized approach

Whenever adding a new operation, the process of reapplying operations with lower IDs
remains the same.

1. Revert all the operations with greater IDs
2. Apply the new operation and check its validity

3. Reapply the reverted operations in ascending ID order and update the validity

21

Before replica2 receives the new operation from replical:

root

nN—w—»—

\ELCWA Make B Make C Move B to A Move C to B

Ascending ID order

22

After replica2 receives the new operation from replical:

root

nN—w—»—

\ELCWA Make B Make C Move B to A Move C to B

Ascending ID order

23

Revert:

Make A

Make B

root

A—m—>—

Make C Move B to A Move C to B

24

Apply:

Make A

Make B

Make C

Move B to A Move B to C RVOVNEGR7N=]

23

Reapply:

Make A

Make B

Make C

Move B to A Move Bto C Move C to B

26

\ELCWA

Make B

Make C

Move B to A Move B to C Move C to B

27

Validity Check: Further Optimization

e Batch Updating: Run revert-apply-reapply for a batch of new operations

e Lifecycle tracking: Avoid reverting and reapplying non-move operations as they
are always valid

28

Batch Updating

Replica 2 might receive multiple operations at once and we can do revert-apply-reapply
once for all remote operations

root

A—w— >

Make A Make B Make C (I HRTW-N Move B to C Move A to C

Ascending ID order

29

Lifecycle tracking

Replica 1:

Replica 2:

Replica 3:

root
root Opl: Move B to |
Z N be a child of A A
I |erp=me====
B \
| AN
c
root N
VRN Op2: Delete C root Receive Op3| root ‘V Receive Opl
7N A | 3 root
A B) B
'
'
'
i
'
root '
root Op3: Move A to | '
7N be a child of C B i
[T S -
C
|
A

Figure 7: With a concurrent delete operation, two move operations no longer form a cycle

can be both executed.

and

30

Lifecycle tracking

A C trash

(1,0) Make A | (2,0) Make B |(3,0) Make C

Ascending ID order

31

Lifecycle tracking

root

trash

W—>—O—

(1,0) Make A | (2,0) Make B | (3,0) Make C [RESOIVISV N NTNE

Ascending ID order

32

Lifecycle tracking

trash
root

(1,0) Make A | (2,0) Make B | (3,0) Make C| (4,0)Move A to C REZSPNBI[EEVAY

Ascending ID order

83

Lifecycle tracking

trash
root

(4,3)Move C to A

Y

(1,0) Make A | (2,0) Make B | (3,0) Make C| (4,0)Move A to C |(4,2)Delete A

Ascending ID order

34

Lifecycle tracking

trash
root ‘
| A
¢ |
B

(4,1)Move C to A

Y

(1,0) Make A | (2,0) Make B | (3,0) Make C| (4,0)Move A to C

(4,2)Delete A

Ascending ID order

85

Lifecycle tracking

root
C
‘ trash
A
B
(4,1)Move C to A
Y
(1,0) Make A | (2,0) Make B | (3,0) Make C| (4,0)Move A to C | (4,2)Delete A

Ascending ID order

36

Lifecycle tracking

root

C:[(3,0)]

A:[(1,0),(4,0), (4,2)]

B :[(2,0)]

(4,1)Move C to A

Y

(4,0yMove A to C

Ascending ID order

37

Lifecycle tracking

root

C:[(3,0)]

A:[(1,0),(4,0), (4,2)]

B : [(2,0)]

(4,3)Move C to A

Y

(4,0yMove A to C

Ascending ID order

38

Evaluation

Miliseconds to converge two replicas with 10k operations diverged!

109 1 1 1 L L

108 4

107 p

106 4 RAR approach
without batch updating

Convergence time (us)

10° 4 3
104 4 L
103 5 \ L
RAR approach
102 4 with batch updating
10t L T T T T
10° 10! 10? 103 104

Number of move operations diverged

Figure 8: Convergence time of two actors that diverge by move operations
39

Overhead caused by move support is acceptable

109 1 1 1 L L

108 4

107 p

106 4
Move support enabled

. ove support
105 4 without lifecycle tracking

enabled with 3
lifecycle tracking

104 4

103 4

Average convergence time (us)

102 4 Move support disabled

10t L T T T T
10° 10! 10? 103 104
Number of operations diverged

Figure 9: Convergence time of two actors that diverge by non-move operations
40

Random correctness testing

There were plenty of corner cases to consider:

1. Randomly generate move operations and apply them to a JSON object
2. Exchange the operations between replicas

3. Check if the JSON object is the same across all replicas

The test discovered a few bugs in the implementation, which were fixed.

41

e Extending move operations is feasible in a collaborative setting without major
performance cost
e The move algorithm take care of potential duplicates and cycles and other corner

cases

42

	Introduction
	Algorithm
	Evaluation

